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Dynamics of a single particle in a horizontally shaken box
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Abstract. We study the dynamics of a particle in a horizontally and periodically shaken box as a func-
tion of the box parameters and the coefficient of restitution. For certain parameter values, the particle
becomes regularly chattered at one of the walls, thereby loosing all its kinetic energy relative to that wall.
The number of container oscillations between two chattering events depends in a fractal manner on the
parameters of the system. In contrast to a vertically vibrated particle, for which chattering is claimed to
be the generic fate, the horizontally shaken particle can become trapped on a periodic orbit and follow
the period–doubling route to chaos when the coefficient of restitution is changed. We also discuss the case
of a completely elastic particle, and the influence of friction between the particle and the bottom of the
container.

PACS. 46.10.+z Mechanics of discrete systems – 03.20.+i Classical mechanics of discrete systems: general
mathematical aspects – 05.45.+b Theory and models of chaotic systems

1 Introduction and summary

While vertically shaken granular materials have been the
object of intensive research in the past years, the investi-
gation of horizontally shaken granular materials has just
started [1,2]. Vertically shaken materials show various cel-
lular patterns and localized oscillons [3–5], and their hor-
izontal counterpart was recently found to display ripple–
like patterns [1]. Since these patterns are due to the col-
lective behaviour of many interacting particles, the one–
particle system shows completely different phenomena
that are, however, equally fascinating. The dynamical evo-
lution of a bouncing ball on a vibrating platform was
studied in [6,7]. As long as the coefficient of restitution
is smaller than one, a particle that hits the platform with
sufficiently small relative velocity bounces off the plat-
form infinitely often during a finite time and looses its
memory of earlier dynamics. The authors of [7] argue that
this “chattering” is the fate of generic trajectories, which
therefore become periodic. They conclude that true chaos
cannot be observed in this system.

In this paper, we study the dynamics of a singe parti-
cle in a horizontally shaken box. While chattering occurs
for part of the parameter values and initial conditions,
we find as well other generic scenarios like periodic orbits
without chatter, the period–doubling route to chaos, and
strange attractors. The interplay between these different
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modes of behaviour makes this apparently simple system
astonishingly rich and fascinating.

The outline of this paper is as follows: in the next sec-
tion we define the system used in our simulations. In Sec-
tion 3 we discuss the limiting case of a completely inelas-
tic particle that assumes the velocity of the wall at each
collision. When the particle hits the wall during the half
period where the wall accelerates toward it, it sticks to the
wall until the end of the half period. The number of reflec-
tions until this locking occurs depends in a fractal manner
on the parameter of the system. We also discuss the influ-
ence of friction between the particle and the bottom of the
container. Next, the opposite limit of a completely elastic
particle is considered in Section 4. This system displays
all signatures of Hamiltonian chaotic systems, including
periodic, quasiperiodic, and chaotic orbits. The physically
most relevant case of a partially elastic particle is then
studied in Section 5. On the one hand, increasing the
coefficient of restitution from zero, the period–doubling
route to chaos is observed in many cases. Ultimately, the
strange attractor becomes so large that it includes the
chattering region, thus making the orbits again periodic.
On the other hand, decreasing the coefficient of restitu-
tion from one, the neutrally stable fixed points become
attractive. All irrational tori disappear and all trajecto-
ries appear to first become periodic. A trajectory starting
in the locking region may or may not lead back to it, and
several periodic orbits coexist, their basins of attraction
being strongly interwoven. Section 6 concludes the paper.
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2 The model

The left and right wall of a horizontally shaken container
of length L are described by the equations

xleftwall = A sin(ωt)

xrightwall = L+A sin(ωt).

ω is the frequency, and A the amplitude of shaking. We
denote position and velocity of the particle by x and v re-
spectively, and introduce the relative position and velocity
with respect to the container walls

l = x−A sin(ωt), u = v −Aω cos(ωt). (1)

Between collisions, the particle moves according to a linear
friction law dv/dt = −γu, i.e.,

du/dt = −γu+Aω2 sin(ωt), (2)

with a friction coefficient γ which will be set equal to zero
in most parts of this paper.
The collisions with the wall are partially inelastic, and the
relative velocity u changes according to

u′ = −ηu (3)

at each collision, where η is the coefficient of restitution.
It is convenient to measure the particle position in

units of the amplitude A, time in units of the inverse
frequency ω−1, and velocity in units of Aω. Then the
system can be described by the dimensionless parame-
ters α = L/A, γ̃ = γ/ω, and η. We denote the dimen-
sionless time, length, and velocity again by t, l, and u.
We also introduce the phase of the container oscillation
φ = ωt mod 2π.

The motion of the particle can be written down im-
mediately. It is most convenient to describe the particle
dynamics in terms of a map that gives the phase of the
container oscillation and the particle velocity immediately
after an impact as function of their values immediately af-
ter the previous impact. Let the particle leave the left wall
(l = 0) after an impact at t = t0 with a relative velocity
u0. The particle moves according to

lt0,u0(t) =
1

γ̃
(cos t0 + u0)−

1

γ̃2 + 1
(sin t+ γ̃ cos t)

−

(
u0 −

1

γ̃2 + 1
(γ̃ sin t0 − cos t0)

)
×

1

γ̃
exp(−γ̃(t− t0)), (4)

the corresponding velocity being u = dl/dt. We will
mainly discuss γ = 0, where this equation reduces to

lt0,u0(t) = sin t0 − sin t+ (u0 + cos t0)(t− t0). (5)

The next collision occurs at the smallest solution tc > t0
of

lt0,u0(tc) = 0 impact at same wall (6a)

lt0,u0(tc) = α impact at other wall (6b)

at which the velocity is uc = ut0,u0(tc). If the particle
impacts again the same wall, the new velocity is now u1 =
−ηuc. On the other hand, if the particle collides with the
right wall, it is convenient to use the symmetry between
left and right wall to map the right wall to the left wall
via t → t − π and l → α − l, so that now u1 = ηuc. The
velocity is thus always measured with respect to the wall
at which the last impact has occurred. Given an initial
phase φ0 = t0 and velocity u0, we thus arrive at the map

φ1 = tc mod 2π, u1 = −ηuc impact at same wall (7a)

φ1 = (tc − π) mod 2π, u1 = ηuc impact at other wall.
(7b)

Before we will study this mapping in detail below, we shall
briefly discuss the case of no dissipation (η = 1 and γ = 0).
Here, the dynamics can be derived from a time–dependent
Hamiltonian [8,9]

H =
p2

2m
+ VSQ(q) +Amω2q sin(ωt), (8)

where VSQ(q) is a square–well potential describing the
walls at q = 0 and L, and m and p are mass and mo-
mentum of the particle. The last term in the Hamiltonian
(8) causes a periodic oscillation of the particle with re-
spect to the walls. (Since we describe the system in terms
of relative coordinates and velocities between the particle
and the wall, a system with periodically oscillating walls
and a system with a periodic particle oscillation superim-
posed to the ballistic motion are equivalent.) Measuring p
in units of mLω, H and V in units of mL2ω2, q in units
of L, and t in units of ω−1, we arrive at a dimensionless
formulation,

H =
p2

2
+ vSQ(q) +

q

α
sin t (9)

where vSQ(q) is an appropriately scaled square well po-
tential with walls at 0 and 1. Upon introducing action–
angle variables (J, θ) for the “unperturbed” Hamiltonian
H0 = p2/2 + vSQ(q) [8,9], the Hamiltonian (9) transforms
to

H =
π2J2

2
+ α−1

1

2
sin t+

2

π2

∞∑
n=−∞
n odd

1

n2
sin(nθ − t)

 .

(10)

The transformation between (p, q) and (J, θ) is given by

p = πJsign θ and q = |θ|/π (11)

for −π < θ < π, and periodically continued in θ. We have
included the term (2α)−1 sin t in the Hamiltonian (10) for
completeness sake, but we shall drop it below as it does
not influence the dynamics.

3 The completely inelastic particle

3.1 Modelling by a one–dimensional map

We now discuss the case γ = 0 and η = 0 in detail.
The particle moves freely between the walls, and after
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0
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Fig. 1. The fate of a particle that is inelastically reflected at
the wall.

an impact the relative velocity u0 with respect to the wall
is zero. This means that the two–dimensional mapping de-
fined above is in fact reduced to a one-dimensional map-
ping. The subsequent fate of the particle depends only on
the phase φ0 at the moment of impact, as indicated in
Figure 1.

For φ0 ∈ [0, π/2[ mod 2π, the particle is reflected from
the wall with (absolute) velocity cos(φ0) and is headed
for the other wall. For φ0 ∈ [π, 2π[ mod 2π, the parti-
cle sticks to the wall until φ0 = 2π, and then leaves the
wall with (absolute) velocity 1. In the intermediate region
φ0 ∈]π/2, π[ mod 2π, the sign of the particle velocity is
not reversed during the collision, and the particle hits the
same wall again at a later phase φ1 which is determined
by the equations (5), (6a), and (7a), leading to

sinφ0 − sinφ1 + (φ1 − φ0) cosφ0 = 0. (12)

For φ0 ≥ φc = 1.79.., the phase φ1 is in the locking inter-
val [π, 2π[. As we are interested in the dynamics between
impacts at opposite walls, we can extend the locking inter-
val to include φc, i.e., to the interval [φc, 2π]. For φ0 < φc,
the phase φ1 is in the interval [0, π/2[ mod 2π and the
particle is immediately reflected towards the other wall,
where it arrives at a phase φ2 now given by (6b) and (7b),
i.e.,

sinφ1 + sinφ2 + (φ2 − π − φ1) cosφ1 = α. (13)

From now on, let φi denote the phase of a wall at the
moment where the particle is reflected towards the other
wall for the ith time. We do not count reflections that lead
to a subsequent reflection at the same wall. Then, the map
that gives φi+1 as function of φi is a map of the interval
[0, π/2[ into itself, dependent only on the dimensionless
parameter α = L/A. The map φi+1 = Φα(φi) is given im-
plicitly by equations (12, 13), and is shown in Figure 2
for the value α = 5. Branches with positive slope corre-
spond to a particle arriving at the other wall at a phase
in the interval [0, π/2], from where it is immediately re-
flected back, while branches with negative slope indicate
a twofold reflection at the other wall, the first reflection
being in the phase interval ]π/2, φc]. The dashed line is the
diagonal φi+1 = φi, and the dotted line indicates the fate
of a particle starting at phase zero. For π/2 > φi > π−φc,

0 0.5π
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φ

i
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Fig. 2. The map for α = 5.

the velocity of the particle is so small that it cannot hit
the other wall in the locking region. A small interval ∆φi
maps onto an interval ∆φi+1 proportional to the flight
time, which is of the order α/ cosφi. For this reason, the
density of branches in the map increases with increasing
α and φi and diverges when φi approaches the value π/2,
where the initial velocity decreases to zero.

3.2 Periodic trajectories

The phase Φα(0) at which a particle starting at phase
zero will be reflected from the other wall depends on α.
It is zero for α ∈ [(2n − 1)π + φc + sinφc, (2n + 1)π], for
any nonnegative integer n. In this case, a particle that
starts in the locking region will hit the locking region at
the other wall, and the periodicity of such a trajectory is
one. For all values of α, the map intersects the perpen-
dicular axis with a slope zero, since the initial velocity
does not change with φi for φi = 0. For values α only
slightly above (2n + 1)π, the map therefore has a stable
fixed point φ? close to zero. This fixed point vanishes with
increasing α via a saddle–node bifurcation, and for values
of α slightly beyond the bifurcation, a particle trajectory
can be trapped for a long time in the neighborhood of the
former fixed point, before it escapes and hits ultimately
the locking region where φi+1 = 0. Due to these locking
regions, there exist no truly chaotic trajectories, but each
trajectory has a finite periodicity. When α increases fur-
ther, the number of reflections in the neighborhood of the
former fixed point (or, more precisely, on the first branch
that has positive slope), decreases in steps of size one.
Close to such a decrease, a trajectory that leaves the first
branch goes through the upper right–hand corner of the
map and can therefore have an arbitrarily large periodic-
ity. Further away from it, a trajectory can hit the lock-
ing region immediately after leaving the first branch. In
general, very complex trajectories can occur. In particu-
lar when Φα(0) is close to π/2, the trajectory will spend
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some time in the upper right–hand corner of the map,
and a slight change in α may lead to a large change in the
periodicity of the trajectory.

There are also many possibilities for obtaining low–
periodicity trajectories. In Figure 2, e.g., the periodicity is
two. A period–doubling bifurcation sequence occurs when
α is decreased from (2n − 1)π + φc + sinφc. In Figure 3,
this scenario is sketched. Since it involves only the first two
branches of the map, the other branches are not shown.
As long as the first branch is small (e.g., for α = 5.8), the
particle hits the locking region after the second reflection.
With decreasing α, the endpoint of the trajectory moves
to the right, and finally hits the foot of the second branch,
leading to a period–doubling bifurcation. For α = 5.743,
one observes therefore a cycle of period 4. When α is de-
creased further, the end point of the 4–cycle moves to the
left and hits the foot of the first branch, leading to an-
other period doubling. The last part of Figure 3 shows
an 8–cycle for α = 5.7406. This period–doubling scenario
continues as the end point of the 8–cycle moves to the left,
etc., and the period becomes infinite when the trajectory
hits the unstable fixed point on the first branch. For even
smaller values of α, other periodicities are observed that
are not powers of 2. This scenario is different from the
Feigenbaum and related scenarios observed for continuous
maps, where the period-doubling cascade leads to chaos.
The map studied here is not smooth and has absorbing
intervals, and chaos does not occur.

Figure 4 shows the period of a trajectory originally
starting in the absorbing region as function of α. All the
above–mentioned features can be seen: the large plateaus
of period 1 that extend beyond (2n + 1) × π because of
the existence of stable periodic orbits outside the locking
region; the stepwise decrease of the number of subsequent
reflections at the first branch as α increases, and a high
periodicity in between these subsequent plateaus; the tra-
jectory of period 2 shown in Figure 2; the period–doubling
sequence at the left end of the period–1 plateaus (due to
the finite resolution in α only the 2– and 4–cycles can
be seen. The 3–cycle lies beyond the period–doubling se-
quence). As the branches of the map become steeper and
more numerous with increasing α, plateaus will become
shorter, and the structures will become more complex for
large α.

3.3 Comparison to a vertically shaken particle

In [6,7], the periodicity of trajectories of vertically shaken
completely inelastic particles is studied. There, gravitation
brings the particle back to the vibrating platform, and no
second wall is needed. Therefore, fast particles have longer
flight times between reflections than slow particles, while
the opposite holds for horizontally shaken particles. For
large oscillation frequencies, the authors of [6] obtain an
approximate map of the form φi+1 ' φi + const.× cosφi.
An approximate map for our system is obtained from
equation (13) for large α and reads φi+1 ' φi + π +
α/ cosφi. The map in [6] has no stable fixed points and no
region where the trajectory can be temporarily trapped.
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Fig. 3. A series of bifurcations when α is decreased.
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Fig. 4. Period of trajectories originally starting in the absorb-
ing region as function of α.

Nevertheless, there are infinite hierarchies of periodic tra-
jectories between low–period plateaus, leading to a struc-
ture on all scales of the period–versus–frequency plot, as
for the horizontally shaken particle.

3.4 The influence of friction

In the presence of friction between the particle and the
container bottom, there exist stable low–velocity particle
trajectories that never touch the walls, but move period-
ically back and forth in a small region somewhere in the
central part of the container. Particles that are reflected
at a phase near π/2 have a very small velocity and can
become trapped in such a region. Apart from the locking
sections in the map Figure 2, there is consequently an ab-
sorbing section for φi above some threshold that depends
on α and the strength of friction. From equation (4) with
u0 = 0 we see that the maximum possible value of l is

lmax
φ0,0 =

1

γ̃
cosφ0 +

1√
1 + γ̃2

· (14)

The first term is the initial velocity divided by the friction
coefficient, and is the distance that a particle with initial
velocity cos(φ0) can travel on a stationary surface. The
second term is the amplitude of the periodic oscillation
that a particle performs when it is periodically driven.
If lmax

φ0,0
< α, the particle never reaches the other wall. If

α > 1, this is always the case for φ0 close enough to π/2, as
the initial (absolute) velocity of the particle is arbitrarily
small. If α is large enough, i.e.,

α >
1

γ̃
+

1√
1 + γ̃2

, (15)

then even a particle that was reflected at phase zero, i.e.,
with maximum velocity, does not reach the other wall.
Figure 5 shows the period of trajectories as function of α
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Fig. 5. Period of trajectories originally starting in the absorb-
ing region as function of α, with a friction coefficient γ̃ = 0.025.

for γ̃ = 0.025. Trajectories that get stuck in the absorbing
region are assigned a period zero. To keep the computer
program simple, friction was only active for x–coordinates
between 1 and α − 1, and only leading terms in γ̃ were
considered. Comparing Figure 5 with Figure 4, one finds
that with increasing α the graph becomes more and more
compressed horizontally, and that an increasing fraction
of trajectories get stuck. The region α > 41.0 where all
trajectories get stuck, is not shown on the graph.

4 The completely elastic particle

We now study the non-dissipative case η = 1 and γ = 0.
Here, the particle moves without friction and is reflected
elastically at the container walls, where its relative veloc-
ity with respect to the wall changes sign at each colli-
sion. The velocity is now an independent variable, adding
a new dimension to the phase space. As the system is
non-dissipative, it can be described by a time–dependent
Hamiltonian as described in Section 2. An equivalent
problem is studied in [8–10], namely the motion of a
charged particle in a one–dimensional infinite square well
potential driven by an oscillating external field. Due to
this field, the particle performs periodic oscillations (su-
perimposed to the free motion). The parameter α−1 is
proportional to the electric field. In terms of coordinates
and velocities relative to the container walls, the dynamics
is the same as for our system.

Since the system is Hamiltonian, phase space volume
is conserved in time, and a stroboscopic Poincaré section
that gives l(t) and u(t) in time intervals T = 2π is area
preserving. However, we find it physically more relevant
to plot the phase of the oscillation and the velocity of
the particle relative to the wall immediately after each
reflection, i.e. φ = tc mod 2π and u(tc) for l(tc) = 0.
As the time intervals are not constant, this representa-
tion is not area preserving, but describes of course the
same physics as a true Poincaré section. Figure 6 shows
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our data points for α = 1.65, α = 16.5, and α = 165, and
for several different trajectories. The value of α used in
[8–10] is of the order of several hundred, since the authors
were mainly interested in the limit of small electrical field.

In order to understand some important features of Fig-
ure 6, we turn to the action-angle variable representation
(10), i.e.

H =
π2J2

2
+

2

π2α

∞∑
n=−∞
n odd

1

n2
sin(nθ − t) .

If one now attempts a canonical transformation such
that the new action and the new Hamiltonian are con-
stants of motion to first order in α−1, one finds that this
perturbation theory breaks down near the resonances,
where π2Jn = 1, i.e., u = α/πn, for any positive n. For
large α, the resonances to lowest n (i.e., to highest en-
ergy), are widely separated, and in the neighborhood of
such a resonance, the system is well approximated by a
single resonance Hamiltonian

Hn =
π2J2

2
+

2

π2α

sin(nθ − t)

n2
· (16)

This Hamiltonian is integrable and becomes identical to
the Hamiltonian for a pendulum under a canonical trans-
formation that equals nθ−t with the pendulum angle vari-
able. For α = 165, Figure 6 shows clearly these pendulum–
like trajectories. In [8], it was shown that the breakdown
of the irrational tori between two resonance regions and
the onset of large–scale chaos can be approximately de-
termined from a two–resonance Hamiltonian that includes
the two resonances adjacent to the considered torus. This
chaotic region can be seen in the lower part of all three
Figures 6. The stable periodic orbits that can be seen for
the larger two values of α represent trajectories that hit
the walls always at the moment of farthest extension, as
illustrated in Figure 7, and they are at the center of res-
onance zones and correspond (in the single resonance ap-
proximation) to a pendulum at stable rest. The velocity
of such a trajectory is given by

us
n =

α+ 2

(2n− 1)π
· (17)

The stability of these trajectories is found from linear sta-
bility analysis. The eigenvalues of the stability matrix are

λn = 1−
π

us
n

±

√
π

us
n

(
π

us
n

− 2

)
. (18)

For us
n > π/2 the eigenvalues are complex conjugate with

|λ| = 1, and the trajectory is neutrally stable. For
us
n < π/2, one eigenvalue is in modulus larger than one,

and the trajectory is unstable. To each of these stable pe-
riodic orbits there exists an unstable counterpart that hits
the walls always at phase π/2 and that has the velocity
uu
n = (α − 2)/(2n − 1)π. These trajectories correspond

(in the single resonance approximation) to a pendulum at
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Fig. 6. Phase and velocity relative to the wall at the moment
of reflection for α = 165, 16.5, and 1.65, for several different
trajectories. To each trajectory, several 100 points are plotted.
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Fig. 7. The periodic orbit of lowest period.

its unstable fixed point. For nonintegrable systems, un-
stable periodic orbits are always part of chaotic regions.
It is, however, remarkable, that the boundary of the large
chaotic regions is close to such an unstable fixed point, and
that its shape is close to the shape of a pendulum sepa-
ratrix u ' C1 + C2

√
1− sinφ. This means that the sep-

aratrix belonging to the highest–energy resonance within
the chaotic region determines the approximate boundary
of the chaotic region.

For very large velocities u � α, the phase and veloc-
ity relative to the wall change only by a small fraction
between subsequent reflections, and solving a differential
equation to leading order in 1/u, one finds on approximate
equation for the tori

u '
√
C − α sinφ .

(More generally, for a container oscillating according to

an equation xwall = f(φ), one finds u '
√
C − αf ′′(φ).)

This approximation can also be found from the Hamilto-
nian (10). A more detailed calculation including the first
resonance gives

u '

√√√√(α
φ

)2
(

1 + C′ ±

√
C′ −

4

α
sinφ

)
− α sinφ. (19)

The shape of stable irrational tori for smaller values of
the velocity is obtained in [10] through approximation by
periodic trajectories.

5 The partially inelastic particle

The dynamics of the partially elastic particle (0 < η < 1)
show a very intricate structure. Depending on the param-
eters and the initial state, the trajectory of a particle can
be on a low–periodicity periodic orbit, a strange attractor,
or an orbit that looses periodically all its energy due to
“chattering”, i.e. an infinite number of reflections at the

same wall during a finite time interval. In the following
subsections we discuss all these phenomena and the inter-
play between them as the parameter values are varied.

5.1 Chattering

When the particle hits the wall with sufficiently small rel-
ative velocity, it is reflected infinitely often from that wall
during a finite time interval and looses all its energy, as
described in [7] for the vertically shaken particle. It sub-
sequently sticks to the wall until the phase is φ = 0, and
then leaves the wall with relative velocity u = 0. In order
to understand this phenomenon, let us consider first a par-
ticle colliding with a wall that is accelerated at a constant
rate a. This situation is equivalent to a ball bouncing in a
gravitational field, where it experiences a constant accel-
eration toward the ground. If the initial relative velocity of
the particle is u0, the relative velocity becomes zero after
the time

T = 2ηu0/a+ 2η2u0/a+ .... = 2u0η/a(1− η)

after the first collision. In our system, the wall accelera-
tion is of the order Aω2, and chattering can occur if the
time T is no larger than of the order of the oscillation
period ω−1, leading to the condition u0 . Aω(1 − η)/η
for chattering. For η close to 1, u0 must be very small,
which is only possible if the particle hits the wall at a
phase φ0 within a distance ∆φ0 ∝

√
1− η of π, or, equiv-

alently, if the particle’s trajectory hits the (absolute) po-
sition x = 0 (or x = L) within a time interval of the
order ∆t ∼ u0∆φ0 ∝ (1− η)3/2. The phase space volume
u0∆t for which chattering occurs shrinks consequently as
(1− η)5/2, when η approaches 1.

In [7], it is argued that chattering is the generic fate
of a particle bouncing on a vibrating platform, with the
number of reflections between two chattering events di-
verging as η approaches 1. In our system, however, a par-
ticle that leaves the wall at phase φ = 0 and with relative
velocity u = 0, returns to the chattering region only for
certain combinations of α and η, and is otherwise trapped
on a periodic or chaotic orbit. Even in those cases where
a chattered particle is chattered again, there may exist
other trajectories that never enter the chattering region.

5.2 The almost elastic case

Due to dissipation, a given phase space volume shrinks
with time. In particular, regions with large initial velocity
are depleted, since the energy of a particle decreases ex-
ponentially fast until it reaches the regime where the time
between impacts is of order unity, i.e. where its velocity
is of order α. The change of u with the impact number n
is approximately given by

du/dn = −u(1− η).

Using the relation dφ ' (α/u)dn, we find

u '
α

(1− η)(C + φ)
(20)
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for the decrease of u with φ, with a constant C that is
determined by the initial conditions. A small initial veloc-
ity interval consequently increases rapidly with increasing
φ, leading to a strong shear of an initial domain of phase
space, and interweaving different domains of attraction,
as we shall see below. In fact, every domain of attraction
contains points with arbitrarily large velocity.

Another consequence of the shrinking phase space vol-
ume is that all stable periodic orbits of a Hamiltonian
system become attractive when small dissipation is added
[11]. This is because the eigenvalues of the stability
matrix remain complex conjugate for sufficiently small
(1 − η), while their product is λ1λ2 = η2, leading to
|λi| = η < 1. Thus, for η infinitesimally smaller than 1,
there is a plethora of attracting periodic orbits with com-
peting domains of attraction. When η decreases further,
most of these periodic orbits merge with unstable orbits
and disappear, leaving only few attractive fixed points.
The fixed points in the center of the resonances survive
over a fairly large range of η values, as shown by the sub-
sequent calculation. Writing

ρ = (2n− 1)π
1 + η

1− η
, (21)

the fixed point in the center of the nth resonance changes
with decreasing η according to

sinφ =
2α− ρ

√
4 + ρ2 − α2

4 + ρ2
and u =

2η

1− η
cosφ.

(22)

This fixed point can vanish by merging either with an un-
stable fixed point, or it can become unstable. The merging
of stable and unstable fixed points occurs when the square
root in (22) becomes imaginary, leading to the condition

η >

√
α2 − 4− (2n− 1)π
√
α2 − 4 + (2n− 1)π

(23)

for the existence of the fixed point. On the other hand, a
stability analysis gives a stable fixed point for

−
1 + η

1− η

2

(2n− 1)π
< tanφ <

1− η

1 + η

2

(2n− 1)π
· (24)

The violation of the left–hand side of condition (24) cor-
responds to a period doubling bifurcation (one eigenvalue
becomes −1), the violation of the right–hand side corre-
sponds to a saddle–node bifurcation (one eigenvalue be-
comes +1).

The chaotic regions surrounding the unstable fixed
points for η = 1 also continue to influence the dynamics
for η < 1. Typically [11], chaotic regions become tran-
sient when a small dissipation is added, and their main
effect is the mixing of basins of attraction. In Figure 8 we
illustrate this for η = 0.9999, where we show three dif-
ferent orbits of particles starting at high initial velocities
in the case α = 165. One clearly sees the intertwining of
different domains of attraction above the first resonance,
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Fig. 8. Phase and velocity relative to the wall at the moment
of reflection for α = 165 and η = 0.9999, for three different
trajectories. To each trajectory, 50 000 points are plotted.
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Fig. 9. The strange attractor for α = 10 and η = 0.142.

making the fate of each particle appear random. After a
long transient time, the first trajectory becomes trapped
in the first resonance, the third trajectory in the second
resonance, and the second trajectory is not yet trapped
after 50 000 reflections. It might either become attracted
later by a higher–period orbit, or it might be chattered
regularly. In the latter case, chatter should occur at inter-
vals of the order of (1− η)−5/2 ' 3× 1012 reflections (see
previous subsection).

A region that is chaotic for η = 1 is not immediately
transformed into a strange attractor when η is decreased
[11]. However, strange attractors occur for smaller values
of η, as we shall see below.

5.3 Large dissipation

As we have seen in Section 3, every trajectory is periodic
for η = 0 and may or may not go through the chattering
region φ ∈ [π, 2π[ mod 2π. Both types of orbits can co-
exist for small η if the trajectory that starts in the chat-
tering region is not trapped by the other periodic orbit.
Since the basins of attraction of the chattering orbit and
the normal periodic orbit are strongly interwoven, a small
change in η can induce or remove such a trapping. When
η is increased, normal periodic orbits typically go through
a period–doubling scenario and then become a strange at-
tractor. This attractor may be a global attractor, or it
may coexist with other attractors, e.g., periodic orbits.
Due to the large dissipation, the attractors are rather flat
and seem almost one–dimensional in Poincaré like plots,
as also known from other systems with large dissipation,
like the Lorenz attractor [12]. Figure 9 shows a strange at-
tractor for α = 10 and η = 0.142. The lower arches of the
attractor correspond to the second, third, and fourth re-
flection at the same wall and are not present for smaller η.
When η increases further, the number of arches diverges,
and the attractor is replaced by a chattering orbit.
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Fig. 10. The set of attractors for α = 2 as η changes from 0
to 1.

There are other mechanisms by which strange attrac-
tors may vanish with increasing η. As the attractor in-
creases with η, its edge points may approach an unstable
periodic orbit that ultimately diverts the trajectory from
the attractor and leads it either into the chattering re-
gion, or to a stable periodic orbit that formerly coexisted
with the attractor. Alternatively, as in the Feigenbaum
scenario, an increase in η can induce a transition from
a strange attractor to an intermittent periodic regime of
some odd periodicity (e.g. 3), that undergoes in turn a
period–doubling scenario. Even in cases where the attrac-
tor is destroyed due to chattering for some value of η,
such intermittent periodic regimes and subsequent period–
doubling cascades can still be observed when η is further
increased.

Figure 10 shows the various attractors for α = 2 as
η is increased from 0 to 1. Increasing η from zero, we
see a stable fixed point emerging from the chattering do-
main which dominates the dynamics at η = 0. This fixed
point undergoes a complete period doubling scenario as η
increases further. At the end of the period doubling sce-
nario we have a chaotic attractor which continues to grow
until it disappears when it overlaps with the chattering
domain. The latter part of the period doubling scenario
exists simultaneously with the stable three–cycle that is
also shown in the figure. This three–cycle moves to the left
as η increases, and it survives to η = 1. Close to η = 1,
more periodic orbits exist that are not shown in the figure.
Moreover, there are other small attractors which appear
for intermediate values of η (some of the “dust” in the
figure).

We have chosen α = 2 for Figure 10, as here the pe-
riod doubling is clearly visible. For other values of α, more
complicated scenarios can occur, as already indicated in
the text above. There may be several period doubling cas-
cades, which can occur for increasing as well as decreasing
values of η. Period–doubling cascades for increasing η are
usually initiated by an eigenvalue of the stability matrix
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of a periodic orbit becoming equal to −1, while cascades
for decreasing η occur when a periodic trajectory starts
to experience several reflections at the same wall. More-
over, there can be intervals of η for which all trajectories
experience chattering, i.e., where the only attractor is the
periodic orbit with chattering. Period–doubling cascades
are also observed when α is varied for fixed η.

5.4 Ghost attractors and domains of attraction

Since the size of strange attractors increases with increas-
ing η until they become absorbed by the chattering orbit,
strange attractors become rare for higher values of η. Nev-
ertheless, the “ghosts” of these attractors still continue to
influence the dynamics by trapping trajectories for a tran-
sient time, which can last several hundred or thousand re-
flections. Consequently, the domains of attraction for nor-
mal periodic and chattering orbits become strongly inter-
woven, as shown in Figure 11 for α = 10 and η = 0.61575.
There is a fixed point sitting in the center of the curl, and
there is one chattering orbit. The large black and white
areas around the curl are the domain of attraction of the
fixed point, and the two colours distinguish between tra-
jectories that need an even or odd number of reflections
before reaching some small region around the fixed point.
The area with the irregularly distributed black dots is the
region where the domains of attraction of the fixed point
and the chattering orbit are interwoven, the black dots be-
ing points that ultimately become attracted to the fixed
point. For two nearby starting points in this region, the
trajectories follow a “ghost attractor”, by which they are
trapped for quite some time. The release of the trajecto-
ries to either the attracting fixed point or the chattering
domain is seemingly random due to the influence of the at-
tractor, as can be seen from the bottom figure. The white
region at the bottom of the top figure belongs entirely to
the basin of attraction of the chattering orbit.

5.5 The influence of friction

For the case of a completely inelastic particle, we have
studied in Section 3 the influence of friction between the
particle and the container bottom. Particles that are so
slow that they cannot reach the other wall become trapped
in the region between the walls, where they perform a low–
amplitude periodic oscillation. For sufficiently large con-
tainer sizes, this is the fate of all particle trajectories. A
similar behaviour can be expected when the coefficient of
restitution does not vanish. All orbits that extend to a re-
gion of sufficiently low velocity will become trapped in the
region between the walls. This will in particular affect long
orbits like chattering orbits and strange attractors. For
the completely elastic case, even a small amount of fric-
tion destroys the Hamiltonian nature of the system, and
we expect that the system behaves similar to the situation
where the coefficient of restitution is slightly smaller than
1. Thus, we expect all stable periodic orbits to become
attractive, and all chaotic regions to become transient for
an infinitesimally small amount of friction.
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Fig. 11. The two domains of attraction for α = 10 and
η = 0.61578. The attracting fixed point is at φ ≈ 5.7 and
u ≈ 2.7. Chattering occurs immediately for orbits entering the
white domain at the bottom of the upper figure, and trajec-
tories starting in the large black and white areas around the
fixed point become absorbed in a small neighborhood around
the fixed point after an even resp. odd number of steps. In the
region with the irregularly placed black dots, trajectories are
strongly mixed, and it cannot be predicted whether they will
be chattered or absorbed at the fixed point. The lower figure
illustrates how two nearby trajectories follow a “ghost attrac-
tor”, before they eventually either chatter or get attracted to
the fixed point.

6 Conclusion and outlook

In this paper, we have shown that a particle in a hor-
izontally shaken box shows a very rich behaviour. While
chattering, i.e., the loss of all kinetic energy during a finite
time, may occur for any value of the coefficient of restitu-
tion smaller than one, other scenarios like period–doubling
and strange attractors are observed as well. We have also
discussed the interplay and transitions between these sce-
narios, and the influence of friction between the particle
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and the container bottom. We know only of one other sys-
tem where the interplay between chattering, chaos, and
periodic orbits has been studied before, namely the forced
oscillator impacting on a wall [13].

The chattering phenomenon discussed in this paper is
a good approximation to reality only when the collision
time between the particle and the wall is much shorter
than the oscillation period. If this condition is not satis-
fied, the deformation of the particle during the collision
has to be included in the model, thus adding another de-
gree of freedom.

When N > 1 particles are placed in the container, new
phenomena will arise. Three or more particles with a suf-
ficiently small coefficient of restitution η < 1 − 1/N are
known to undergo an inelastic collapse, where they loose
all their relative kinetic energy due to infinitely many colli-
sions during a finite time [14,15], a phenomenon similar to
chatter. But even for parameter values that do not allow
for an inelastic collapse, clustering phenomena occur. In
[16], a system with one elastic and one thermally moving
wall is studied for approximately ten particles. The au-
thors find that most of the particles form a cluster almost
at rest, while a few remaining particles travel between
the boundaries at a much higher speed. We have seen a
slightly different phenomenon in the periodically shaken
box, namely the formation of two clusters travelling be-
tween the boundaries and the center of the system, similar
to Newton’s cradle.

This work was supported by EPSRC Grant No. GR/K79307.
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